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PERIODIC MOTIONS OF A HEAVY, RIGID, DYNAMICALLY ALMOST SYMMETRIC BODY 

WITH A FIXED POINT* 

V.S. SERGEEV 

A motion is studied, about a fixed point, of a heavy rigid body, the mass distribu- 
tion in which resembles the mass distribution encounteredinthe Lagrange's case. 
The equations of motion are written in the action-angle variables for the Lagrange's 
case, after which the method developed by Poincark /I/ for such systems is used to 
prove the existence of new families of periodic motions represented by series in 
powers of a small parameter introduced into the process. 

Periodic motions of a reduced system were studied under the above conditions in /2,3/. 
The action-angle variables were used in the Euler- Poinsot problem in /4/ and employed in ,/5/ 
to prove the existence of periodic motions of general type in the corresponding perturbed 
problem. 

In the Lagrange's case the action-angle variables were used for a system with excluded 
cyclic coordinate in /6/ to clarify the problem of existence of the conditionally periodic 
motions of a rigid body differing little from the Lagrange gyroscope. The action-angle vari- 
ables were used in /7/ in the Lagrange's case for the complete system, where the expansions 
into Fourier series of the direction cosines of the vertical were also given. 

1. We shall describe the motion of a heavy rigid body using the Euler angles 6, cp,$ and 
the conjugated canonic impulses p6,pw,p+. We introduce the small parameter a>o by means 
of the formulas 

B = A (1 + @)-I. I0 = +%l, Yo = PYJ, 2” = %l > 0 

containing the moments of inertia A.B principal for the fixed point 0, the coordinates %I 
y,,z, of the center of mass of the body relative to the coordinate system attached to the 
principle axes of inertia of the point 0, the dimensionless quantities D, zlr Y,,ZI which are 
assumed finite compared with the small parameter p , and the characteristic dimension of the 
body 2. We assume that the 0, axis is fixed in the space of the Ozyz coordinate system 
and directed vertically downwards. We now pass to the new variables I= (1,. I,! 1.J. w = (u,lr w2, w3) 
which are the action-angle variables in the Lagrange's case. We assume that the roots ei(l = 
1,2,3) of the known third order equation in cos6 defining the domain of admissible values 
of 6 satisfy the inequalities 

e3 < -1. --I<e,<e1<1 (1.1) 

Then the transformation will have the form 

(1.2) 

Here k= E?/E~ is the modulus of the elliptic integrals and functions, 1Wg is the weight of 
the body, c is the principal moment of inertia and k, is the constant of the area integral. 
The quantities p, 8; in formulas (1.2) are assumed to be expressed in terms of 1. When 

p=o, the variables u), vary, in the general case, in the conditionally periodic manner,with 

the frequencies 
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J=EQvlTo Q+ (n/2) A-C 
%=2Ah’? _ 01= r, os=ls AC 

Q- (47;2) 
--- 

2AK 

2. Let us write the Hamiltonian function of the problem in the form 

H=R, 
D 

2A 

(2.1) 

s1n 8 

where 6, cp,p, depends on Z and w in accordance with the formulas (1.2). Using the Poincar: 

method /l/ we shall seek the periodic solutions of the system of equations with Hamiltonian 
(2.1) similar to periodic solutions of the unperturbed integrable problem. We assume thatthe 
relations o~T=~&, k= 1, 9, 3 where Q#O hold for some 
of the system in question where 

and ok, ak are constants, will be T-periodic. Using the 
at small p at least two families of T-periodic solutions 
ing conditions hold: 

T>O. -Then the general solution 

(2.2) 

Poincar: theorem we can assert that 
will exist, provided that the follow- 

82 [Jf,] 
~20 when $$=O (2.3) 

where [ZZ,] denotes the function ZZ1 averaged over the period T, into which the solution (2.2) 
has been-substituted, and 

where Zk = ah_ . The above periodic solutions are holomorphic functions of parameter 
Let us turn our attention to condition (2.4). Let 6, denote the Jacobian of Oh 

and 6, the Jacobian ej over Zk(f, k= i,2,3), in which case we have 6 =8,6,, and we have 
lowing expression for 8, : 

" = 

41ma#SK(z**- I,') 

(el -e,) (c? - cs)(c8 - cl) 

(2.4) 

P. 
in ej 

the fol- 

(2.5) 

We note that under the assumptions that (1.1) the inequality IZ,I#lZr,~ holds and therefore 
according to (2.5) 6, # 0. It can be shown, e.g. by computing the first terms of the expans- 
ion of 6, into a series in powers of k8, that the Jacobian 8,fO. Here 6, is of the order of 

kZ and can be written in the form 

(2.6) 

where A, (k') is a holomorphic function of kz. The expression within the square brackets in 
(2.6) is not identically zero , and this can be confirmed by expressing the variables I, and 
I, in terms of the independent quantities flo,a,es(~,~~l), 

Next we consider the condition (2.3) which can also be fulfilled. Indeed, writing for 
simplicity A =B and assuming from the opposite that the relations a[H&ac,=O and a~[ZZJ/&g=O 
are satisfied simultaneously, we find, as r12+ R* i 0, that 

exp[i(@,+od+aa)]sin6& = 0 (2.7) 
0 

Here the arguments in the functions C~=m--~~,6 depending in accordance with (1.2) on Z and 
W, , have been changed according to (2.2). After transforming (2.7) we arrive at the rela- 

tions 

erp(XLl& Rdt = 0 
0 

R = cm@ I sin ~-cLI-'~S S dt ’ S = sin a, sin 6 

(2.8) 
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The function R periodic in f with period T,= 23/o,, can be expanded on the segment IO I',] lntz 
a Fourier series the coefficients of which are denoted by rn. The integral (2.8) rsnotzero 
only when w~=~,(~+o is an integer) and Ln this case it is equal to r,T. Thus for every 
II from the sat of values such that r,+O and 03= FLOP and provided that (2.3) holds, there 
exist solutions to the problem periodic in 6.q.rg (mod2Tit . We shall show that the setofvalues 
of n in nonempty. To do this we expand with help of (1.2! the function R, for kL*l, rnto 
a Fourier series, and write the first terms of the expansion in powers of k' thus 

(7.9! 

where Rx(Q,~') is a holomorphic function of b*. From (2.9) it follows that periodic solu- 
tions exist for which @I=%. The function R,(zc~,CI) contains a harmonic of CC&ZQ, therefore 
periodic motions with o3 = 201 must also exist and we can have 03= (n~,Jrn,)o~. The existence of 
periodic solutions for n>2 follows from the results of the paper (*). 

3. We shall show that families of solutions exist at small p, describing periodicmotions 
with periods close to those of periodic motions of the unperturbed problem, We introduce a 
new independent variab3.e F by means of the formula 

t = (1 + ab (3.1) 

where a= pa' and a' is a holomorphic function of p. We shall seek periodic solutionsof the 
Hamiltonian system of equations transformed according to (3.1), T-periodic in t and satisfy- 
ing at Z= 0 the condition 

Ik = CZk + ph.9 u’k = ok + pk,s, k = i, 2, 3 

where &= &' and pk‘ are holomorphic functions of p, to be defined. Then the conditions 
of periodicity of the functions assume the form 

(3.2) 

where Y, are holomorphic functions of ~,a',&. We shall regard the relations (3.2) asequations 
connecting a', pk' (k = 1, 2, 3). The sufficient condition of their solvability with respect to e.g. 

a', 8,'. &' is I that the inequality 

(3.3) 

holds for I& = a& . The initial value of the variable I, remains arbitrary. Thus the fulfil- 
ment of the inequalities (3.3) and (2.3) is a sufficient reason for the existence of two 

families of periodic motions, with the period, determined uniquely from initial conditions in 
accordance with (3.2), is close totheperiod of the periodic motion of the unperturbed problem. 

Let us compute the determinant as (3.3) for k”e 1, expressing it in terms of the 

Jacobian 
D (01. W*r I,os)lr, (11, 1% 1s) 

and Jacobians A,? OZ. Using (2.6) we obtain 

(3.41 

*I Sergeev V.S. On periodic motions of a heavy rigid body rotating about a fixed point. Pre- 
print VTs Akad. Nauk SSSR, Moscow, 1981. 
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where As (ko) is a holomorphic function of k2 . From (3.4) we see that for small k2, &SO I 
and therefore the periodic motions sought exist. Using (3.4) we can obtain from (3.2) an ex- 
plicit expression for the principal term of the expansion of a' into a series in c at small 
k'. 

The families of periodic motions obtained T(i+a) -periodic in t depend on four arbit- 
rary initial conditions. Every periodic solution corresponding to the periodic motions shown, 
has at least four characteristic zero indices /l/. If the condition of isoenergetic non- 
degeneracy is fulfilled for the reduced system, then one of the families of periodic motions 
the remaining two characteristic indices are real and have opposite signs /1,5/, i.e. the 
motions of this family are unstable. The second family has in this case, in addition to the 
zero indices, two purely imaginary characteristic indices /1,5/. 

The author thanks V.V. Rumiantsev for the comments and attention given. 
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